(绘制不同调制方式的星座图)请求高手赐教!,第1张

不可否认血型和星座,某些方面有一定的共性!

但想想中国14亿人,同星座属相的都有一亿多吧! 还不说世界! 哪两个人会有完全相同的命运 成长经历都不相同! 难道你不相信自己是个独特的个体而一定要去给贴个标签么

今天是德科技和您一起探讨光调制里的星座图和相关数字调制技术。

QPSK、8-PSK、16-QAM、32-QAM 和 64-QAM 制式的星座图

在模拟调制中,载波参量的改变是按连续的模拟信息。在数字调制中,这些载波参数(幅度,频率和相位)的变化由离散的数字信号决定。从这个意义上讲,数字调制和模拟调制并无本质区别。数字调制信号只须表示离散的调制状态,这些离散状态在矢量图上称为符号点 (symbol point),符号点的组合称为星座图(constellation)。

星座图和符号

星座图展示了 QAM 格式的可用符号。以 16 QAM 格式为例,每个符号表示着四个二进制位的一种可能组合。对于这四个二进制位来说,总共可能有16个组合。换言之,每个符号表示着四位。

为了提高数据带宽,我们可以增加每个符号表示的位数,这样可以提高频谱效率。不过,随着星座图中符号数量的增加,符号间的距离开始变小。符号越来越接近,因此就越容易受到噪声和失真的影响,出现错误。下图展示了当从 16-QAM 格式变为 64-QAM 格式时,符号密度的增加。

数字调制的基本术语

我们先来了解一些关键的术语。

比特 Bit :是通信系统传输信息的单位,一般指通信系统中传输的有用信息。

比特率 Bit Rate :是比特的传输速率,也就是通信系统时间内的信息传输速率,单位是比特/秒(bit/s)。

符号 Symbol :是信息调制载波的离散状态,也就是矢量,是与载波和调制方式紧密联系在一起的概念。模拟调制也可以说有符号,只是符号数量无穷多,无法直接分析和观察。因此只在数字调制中讨论符号,其符号数目是有限个。符号并不是信息,但信息是通过数字调制映射为载波状态即符号来传输的。

码元速率或符号率 Symbol Rate :载波调制符号的转换速率,实际上是载波状态的变化速率。符号率越高,相应信息传输速率也越高,但信号中包含的频谱成分也越高,占用频带越宽。单位是波特 (Baud)。

星座图 Constellation:调制信号在IQ平面上的所有符号点的组合。星座图定义调制技术的信号分布与调制数字比特之间的映射关系。一种调制技术的特性可由信号分布和映射完全定义,即可由星座图来完全定义。

矢量图 Vector Diagram:调制信号在符号点间变化的过程描述。矢量图不仅显示星座点,而且显示星座点之间的转换过程。

眼图 Eye Diagram:检查数字信号传输畸变的一种形象直观方法。它是解调后在低通滤波器输出未经再生的基带信号,在示波器上用位定时作为外同步时重复扫描

类似于其他数字调制方式,QAM发射的信号集可以用星座图方便地表示,星座图上每一个星座点对应发射信号集中的那一点。

星座点经常采用水平和垂直方向等间距的正方网格配置,当然也有其他的配置方式。

数字通信中数据常采用二进制数表示,这种情况下星座点的个数一般是2的幂。

星座点数越多,每个符号能传输的信息量就越大。但是,如果在星座图的平均能量保持不变的情况下增加星座点,会使星座点之间的距离变小,进而导致误码率上升。因此高阶星座图的可靠性比低阶要差。

采用QAM调制技术,信道带宽至少要等于码元速率,为了定时恢复,还需要另外的带宽,一般要增加15%左右。

什么是“通信(Communication)”?

简单来说,通信就是传递信息。我把我的信息发给你,你把你的信息发给我,这就是通信。

通信的官方定义更加严谨一些——人与人,或人与自然之间,通过某种行为或媒介,进行的信息交流与传递,叫做通信。

也就是说,通信不仅限于人类之间的信息交换,也包括自然万物。

还是从我们人类开始说起吧,毕竟在绝大部分通信场景中,人都是主体。

在人类诞生的那一刻起,通信就是生存的基本需求。新生的婴儿,通过哭声传递饥饿的信息,给自己的母亲,索取母乳和关爱。参与围猎的部落成员,通过呼吼声,召唤同伴的支援和协助。这一切,都属于通信的范畴。

随着人类社会组织单位的不断变大,通信的作用也越来越大。国家之间的合纵连横,亲人之间的思念关怀,都离不开通信。通信的手段,也由面谈这种近距离方式,逐渐发展出烽火、旗语、击鼓、鸣金等多种远距离方式。

这些通信方式,主要是通过视觉或者听觉来实现。这就要求通信双方之间,是可视的,或者,是可以听见的。客观条件的约束,就限制了通信的范围。

而如果采用驿站或信鸽等方式,虽然一定程度上解决了范围和距离的问题,却带来了时效性的问题,无法在很快的时间内送达。

19世纪电磁理论出现并成熟。在此基础上,莫尔斯发明了莫尔斯编码和有线电报,贝尔发明了电话,马可尼发明了无线电报,人类就此开启了用电磁波进行通信的近现代通信时代。通信的距离限制,不断被突破。与此同时,长距离通信的时延,也在不断缩小。

时至今日,我们已经全面进入了信息时代,对通信的需求和依赖变得前所未有的强烈。像手机这样的现代通信工具,作为每个人保持社会联系的纽带,变成了寸步难离的必需品。

不仅是个人,整个社会的运转,都建立在对通信技术的依赖之上。通信技术的先进程度,成为衡量一个国家综合实力的重要标志之一。

我们无法想象,如果通信技术倒退回两百年前,我们的世界将会是怎样的混乱场景。

让我们回到通信的本质。

任何通信行为,都可以看成是一个通信系统。而对于一个通信系统来说,都包括以下三个要素:信源、信道和信宿。

例如下课时,校工打铃:校工就是信源,空气就是信道,而老师和同学们,就是信宿。

那铃声是什么呢?铃声是信道上的信号。这个信号带有信息,信息告诉信宿:该下课了。

更具体一点,振铃就是发送设备,老师和同学们的耳朵,就是接收设备。

是不是所有的消息(数据)都是信息呢?是不是消息越多,信息就越多呢?

不是的。

很多人认为,消息越多,数据越多,信息量就越大,这是一个误区。

信息量的大小,和信息出现的概率,有直接关系。简单来说,随机事件发生的概率越小,信息量就越大。

举个例子,如果我告诉你,“地球是圆的”,这句话,信息量就是0。简而言之,我说的是一句废话。

如果我告诉你,我在某地藏了一亿美金的现金,那么显然,这个信息量就很大了。

通信技术的发展过程,说白了,就是研究如何在更短的时间,传输更大信息量的过程。

为了达到这个目的,信源侧需要不断升级自己的发送设备,信宿需要不断升级自己的接收设备。而信道的介质,也在不断升级。

根据信道介质的不同,我们将通信系统分为有线通信和无线通信。

顾名思义,采用网线、光纤、同轴电缆作为通信介质的,就是有线通信。而采用空气甚至真空的,就是无线通信。

不管是有线还是无线,传输的都是电磁波——在有线电缆中,电磁波是以导行波的方式传播,而在空气(真空)中,电磁波是以空间波的方式传播。

世界上没有真正意义上的“完全”无线通信。无线通信系统中,除了信道部分会有无线环节之外,包括信源、信宿和大部分的信道,其实都是有线的。

就像我们现在使用的手机通信系统,它只有手机和基站天线之间是无线传播,其它环节仍然是有线传播,例如基站到机房,南京机房到上海机房,等等。

既然说到手机通信系统,那我们就多介绍一下。手机通信系统,也叫蜂窝通信系统,因为手机的通信依赖于基站,而基站小区的覆盖范围,看上去有点像蜂窝。

手机通信通常被称为移动通信,移动通信属于无线通信的一种。除了移动通信之外,Wi-Fi通信,对讲机通信,卫星通信,微波通信,也都属于无线通信。

用于无线通信的电磁波,看不见、摸不着、听不到,却速度极快(光也是一种电磁波,秒速30万公里)。但是想要利用好它,并不是那么容易。

最开始有线电报的时代,我们通过电流脉冲的长短组合,来传递一个字母。例如字母a,就是:“· -”,一个点信号,一个长信号。发出一个完整的单词,就要好几秒甚至十几秒的时间。

显然,这种速度是无法接受的,既费时又费力。

后来,人们开始用“波”来承载信息。

如果按波的振幅来表达0或1,振幅大的代表1,振幅小的代表0,就是调幅(AM)。

如果按波的频率来表达0或1,波形密集的代表1,波形稀疏的代表0,就是调频(FM)。

AM和FM,眼熟了吧?收音机上就是这么标的。

很显然,每秒钟发送的波形越多,传输的0和1就多,信息量就大。换言之,频率越高,速率越快。

很多人问,为什么我们现在要使用高频信号传输信息。上述就是主要原因之一。

不管是AM调幅还是FM调频,都属于我们经常说的调制。解调呢?就是在信宿那端,将信息从已调信号里提取出来。

我们以前上网用的猫(Modem),就是调制解调器,干这个事情的。现在到处热议的手机芯片里面的基带芯片,说白了,也是干这个事情的。

我们目前使用的通信系统,基本上都是数字通信系统,传输的都是数字信号。

数字信号的常用调制方式,就是书上常说的幅移键控(ASK)、频移键控(FSK)、相移键控(PSK),还有正交幅度调制,也就是大名鼎鼎的QAM。我们的LTE,还有即将到来的5G,都是用的QAM。

这种很多点的图,叫做星座图

传输数据,就像汽车运货,如果想要运输更多货物,一方面,可以让马路变宽,另一方面,也要想办法让自己减重。

有价值的货物当然不能丢,但是,可以减少无价值的载重。就像人与人之间说话,要挑重点的话说,少说废话。

这里,就涉及到编码的技术。

编码分为两种,第一种是信源编码。

我们听到的声音,是音频信号,看到的场景,是或视频信号。不同的信号,都有自己的编码方式。

对于音频信号,我们常用的是PCM编码和MP3编码等。在移动通信系统中,以3G WCDMA为例,用的是AMR语音编码。

对于视频信号,常用的是MPEG-4编码(MP4),还有H264、H265编码。在政府企业常用的视频会议电话系统(也是通信系统的一种)中,现在普遍开始采用的,就是H265编码。

除了信源编码之外,就是信道编码了。

信源编码是删除冗余信息,而信道编码恰好相反,是增加冗余信息。

为什么呢?

这里,就要说到无线信道的复杂性了。

相对于有线信道的可靠和稳定,无线信道的问题要多很多。

无线信号在空气中的传输,随着传输距离的增加,本身就会有损耗。这种损耗,也叫做路径损耗(路损)。

传输的过程中,遇到障碍物,如果穿透它,也会产生损耗,叫穿透损耗。

损耗和无线信号传输的几种效应有密不可分的关系。例如阴影效应、多径效应、远近效应,还有大家一定听说过的多普勒效应。限于篇幅和理解难度,不多做介绍。

除了这些电磁波特性造成的衰耗之外,无线通信还容易遇到各种干扰和噪声。例如电磁干扰和频段挤占等。

信道编码,目的就是要对抗信道的各种不利影响。

增加冗余信息,就像在货物边上塞保护泡沫,保护货物的正确运输。如果路上遇到颠簸,发生碰撞,货物的受损概率会降低。

去年闹得沸沸扬扬的联想5G标准投票事件,华为主推的Polar码,还有高通主推的LDCP码,说的都是信道编码。3G/4G时代处于核心地位的Turbo码,也是信道编码。

对抗衰弱的办法,除了信道编码之外,还有分集技术和均衡技术。像现在备受关注的MIMO(多天线收发技术),就属于空间分集技术中的一种。简单来说,就是一个不够就用两个,两个不够就用四个。

说完了调制和编码,我们最后再来说说复用和多址。

前面我们所说的,是一对一的通信模型。但实际生活中,我们不可能一个通信系统只给两个人用。我们会尽可能让更多的人可以同时使用它。这就需要用到多址技术。

说到多址,大家一定听说过这么几个词:FDMA、TDMA、CDMA、SDMA、OFDMA……

没错,这些都是多址技术,分别是:

FDMA:频分多址

TDMA:时分多址

CDMA:码分多址

SDMA:空分多址

OFDMA:正交频分多址

多址,就是Multiple Access(多接入)。

简单举例,我们把频率资源想象成一个房间,如果把房间分割成不同的空间,不同的用户在不同的房间聊天,这就是频分多址(FDMA)。

如果这个房间里,某一时间让某一个人说话,下一时间段,让另一个人说话,就是时分多址。

如果大家都用各自的语言说话,有的人说英语,有的人说法语,有的人说中文,那就是码分多址。

利用天线的朝向来区分不同用户,叫空分多址。(不好意思,房间的例子不适用这个)

把空间划分成不同房间,房间和房间之间有重合,以便塞下更多的房间,这个叫做正交频分多址。

而复用(Multiplexing)又是什么呢?复用和多址的区别,就是复用针对资源,而多址针对用户。

举个例子,将10MHz的频率资源,划分成5个2MHz,作为子信道,这种做法,叫复用。不同的用户使用这些子信道,每个子信道变成了用户的“址”,这叫多址。

好啦,以上就是今天文章的所有内容。相信并不难懂吧?

这是一个很简单的问题吧,B代表2,p是相位的意思,sk是键控,这是通信调制方法的最基本的东西,最简单的星座映射方案是将比特1映射在星座图里面的(0,1)位置,比特0映射为星座图里面的(0,-1)位置。 最大似然比函数LLR忘记了,先回答到这里

首先给出了一些通信的基本概念,然后是通信系统的组成,模拟通信系统,数字基带通信系统,数字频带通信系统,模拟信号的数字化和PCM等等

现在的通信系统大部分都是数字通信系统,由信源,发送设备,信道,接收设备,信宿。发送设备中又有信源编码,信道编码,调制;接收设备中又有解调,信道译码,信源译码

信源编码实际上就是压缩编码,提高信号的有效性,信道编码实际上是通过增加监督位和冗余,提高信号的抵御噪声的能力,增加信号的可靠性

模拟通信:

2Baud/Hz

1Baud/Hz

连续波调制和脉冲调制,连续波调制又分为模拟调制和数字调制,模拟调制:AM,FM,PM

数字调制:ASK,FSK,PSK,DPSK

脉冲调制又分为脉冲模拟调制和脉冲数字调制,脉冲模拟调制:PAM,PDM,PPM

脉冲数字调制:PCM,DPCM,DM(增量调制)

AM可用相干解调和非相干解调,非相干解调例如包络检波法,其实现起来比较简单,但是有门限效应,只有在信噪比较大的时候才能使用

在星座图中,每个点表示一个调制的信号,星座图中的欧氏距离反映了其的抗噪声性能,欧氏距离越大抗噪声性能越好,所以16QAM比16PSK的抗噪声性能更好,16QAM是在一个正方形上分布的,16PSK是在一个幅度一样的圆上分布的,相邻两点的欧氏距离小

PCM的过程:采样,量化,编码

均匀量化和非均匀量化

非均匀量化能够提高小信号的量化信噪比,很多信号的归一化有效值比较小,例如语音信号只有20%左右

A律(13折线法)和u律(15折线法)

眼图,眼睛张开高度的一半表示了噪声容限,判决门限位于上下高度的中线上,最佳抽样时刻

匹配滤波器,相关接收机

最大后验概率准则在输入等概的时候可以转换的最大似然,实际应用中是利用星座图中最小欧式距离准则

把高速的数据流利用正交子载波转换成低速的数据流,这些正交的子载波在频谱上是有重叠的,提高了频谱效率。

移动通信的发展史,1G-4G,5G,

1G:FDMA

2G:GSM系统,用了TDMA

3G:CDMA,分为3种,WCDMA,CDMA-2000,TD-SCDMA

4G:OFDMA

FDMA:给不同的用户划分不同的频段,每个用户在不同的频段上进行数据的传输,需要保护间隔

TDMA:不光分频,还在每个频段上划分了不同的时隙,每个用户在不同的时隙上传输数据。

CDMA:不同的用户采用不同的码字,相邻的小区采用能用相同的频率

硬切换:越区切换时要先与原小区断开连接,再与新小区建立连接,容易掉话

软切换:越区连接时先与新小区建立连接再与原小区断开连接

2G时是先频分复用后时分复用,相邻小区之间用的是不同的频点,一台手机在同一时刻上只能工作在一个频点上

3G中CDMA是用不同的码字区分,相邻的小区可以用同样的频点

空间的分集增益,接收端能收到独立的一系列信号,这些信号包含同一信息,能通过一些手段加以利用,加权或者输出信噪比最大的,得到更好的输出。

时间分集增益,频率分集增益

时间分集增益:rake接收机,3G,CDMA,到达rake接收机的时间不同

频率分集增益:在某些频率上衰落比较大,在某些频率上衰落比较小

提高信号的抗干扰性,扩频后频带比较宽带来频率上的分集增益

频率选择性衰落:多径效应(OFDM可以抵抗)

平坦衰落

快衰落:多普勒频移

无差错条件下,传输信息的最大速率;

提高信道容量可以通过提高信噪比和信道带宽来实现,在一定条件下带宽可以和信噪比相互转换

标签: 信道 通信 信号 符号 就是