正交振幅调制(QAM)的摘要

科学网 89 0

正交振幅调制(QAM)的摘要,第1张

本章主要介绍局域网、广域网,以及OSI各层主要功能及其工作原理这些基本的计算机网络通信技术,同时还将介绍计算机网络数据通信中常见的技术指标和参数。这些都是我们平常进行各种网络工程施工和系统设计的基础和前提。本节是调制方式中QAM正交振幅调制。 4.QAM正交振幅调制(Quadrature Amplitude Modulation)

QAM(Quadrature Amplitude Modulation)就是用两个调制信号对频率相同、相位正交的两个载波进行调幅,然后将已调信号加在一起进行传输或发射。在NTSC制和PAL制中形成色度信号时,用的就是正交调幅方式将两个色差信号调制到色度副载波上。

QAM也可用于数字调制。数字QAM有4QAM、8QAM、16QAM、32QAM等调制方式。其中,16QAM和32QAM广泛用于数字有线电视系统。下面以16QAM为例介绍其原理。

图3-34给出了16QAM调制器框图及星座图。作为调制信号的输入二进制数据流经过串—并变换后变成四路并行数据流。这四路数据两两结合,分别进入两个电平转换器,转换成两路4电平数据。例如,00转换成–3,01转换成–1,10转换成1,11转换成3。这两路4电平数据g1(t)和g2(t)分别对载波cos2πfct和sin2πfct进行调制,然后相加,即可得到16QAM信号。

QAM调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。在美国,正交调幅通常用在地面微波链路,不用于国内卫星,欧洲的电缆数字电视采用QAM调制,而加拿大的卫星采用正交调幅。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下,QAM星座图中可以容纳更多的星座点,即可实现更高的频带利用率,目前QAM星座点最高已可达256QAM。

PSK只利用了载波的相位,它所有的星座点只能分布在半径相同的圆周上。当星座点较多时,星座点之间的最小距离就会很密,非常容易受到噪声干扰的影响。调制技术的可靠性可由相邻星座点之间的最小距离来衡量,最小距离越大,抵抗噪声等干扰的能力越强,当然前提是信号的平均功率相同。当噪声等干扰的幅度小于最小距离的1/2时,解调器不会错判,即不会传输误码;当噪声等干扰的幅度大于最小距离的1/2时,将传输误码。因此PSK一般只用在8PSK以下,常用的是BIT/SK和QPSK。当星座点进一步增加时,即需要更高的频带利用率时,就要采用QAM调制。在PSK中I信号和Q信号互相不独立,为了得到恒定的包络信号,它们的数值是受到限制的,这是PSK信号的基本特性。如果去掉这一限制,就得到正交幅度调制QAM。作为一个特例,当每个正交信号只有两个数值时,QAM与4-PSK完全相同。当M>4时QAM的信号星座呈正方形分布,而不再像PSK那样沿着一个固定的圆周分布。

.QAM正交振幅调制(Quadrature Amplitude Modulation)

QAM(Quadrature Amplitude Modulation)就是用两个调制信号对频率相同、相位正交的两个载波进行调幅,然后将已调信号加在一起进行传输或发射。在NTSC制和PAL制中形成色度信号时,用的就是正交调幅方式将两个色差信号调制到色度副载波上。

QAM也可用于数字调制。数字QAM有4QAM、8QAM、16QAM、32QAM等调制方式。其中,16QAM和32QAM广泛用于数字有线电视系统。下面以16QAM为例介绍其原理。

图3-34给出了16QAM调制器框图及星座图。作为调制信号的输入二进制数据流经过串—并变换后变成四路并行数据流。这四路数据两两结合,分别进入两个电平转换器,转换成两路4电平数据。例如,00转换成–3,01转换成–1,10转换成1,11转换成3。这两路4电平数据g1(t)和g2(t)分别对载波cos2πfct和sin2πfct进行调制,然后相加,即可得到16QAM信号。

QAM调制效率高,要求传送途径的信噪比高,适合有线电视电缆传输。在美国,正交调幅通常用在地面微波链路,不用于国内卫星,欧洲的电缆数字电视采用QAM调制,而加拿大的卫星采用正交调幅。QAM是幅度、相位联合调制的技术,它同时利用了载波的幅度和相位来传递信息比特,因此在最小距离相同的条件下,QAM星座图中可以容纳更多的星座点,即可实现更高的频带利用率,目前QAM星座点最高已可达256QAM。

PSK只利用了载波的相位,它所有的星座点只能分布在半径相同的圆周上。当星座点较多时,星座点之间的最小距离就会很密,非常容易受到噪声干扰的影响。调制技术的可靠性可由相邻星座点之间的最小距离来衡量,最小距离越大,抵抗噪声等干扰的能力越强,当然前提是信号的平均功率相同。当噪声等干扰的幅度小于最小距离的1/2时,解调器不会错判,即不会传输误码;当噪声等干扰的幅度大于最小距离的1/2时,将传输误码。因此PSK一般只用在8PSK以下,常用的是BIT/SK和QPSK。当星座点进一步增加时,即需要更高的频带利用率时,就要采用QAM调制。在PSK中I信号和Q信号互相不独立,为了得到恒定的包络信号,它们的数值是受到限制的,这是PSK信号的基本特性。如果去掉这一限制,就得到正交幅度调制QAM。作为一个特例,当每个正交信号只有两个数值时,QAM与4-PSK完全相同。当M>4时QAM的信号星座呈正方形分布,而不再像PSK那样沿着一个固定的圆周分布。

会冲突,但会造成性能降低,一般不会导致不可用的情况。WIFI跟蓝牙的干扰还不算严重,因为在物理层使用的协议有差别,蓝牙使用的是跳频(FHSS),WIFI使用的是直列展频技术(DSSS)。使用跳频能够更好抗干扰,当然这种抗干扰能力是有限的,信道被占满(有多个WIFI AP,并且使用了不同的信道),并且有大量的数据传输的时候(大量的带宽被占用),仍然会出现性能下降的情况,但是对于平时使用的话,不会出现完全不能提供服务的情况。WIFI和zigbee的干扰更加严重,因为使用了相同的调制方式,而且在物理层有对CSMA/CA协议的不同实现,导致在冲突避免时,zigbee在争夺信道的时候处于不利的位置,如果他们使用相同的信道(占用的带宽重叠),一旦WIFI发送数据,直接导致zigbee不可用。

DVB-S2系统流程图如图1所示,由于其良好的扩展性,因而每一部分都包括较多的选件、适配等单元,复杂程度远胜DVB-S。

图 2

模式适配(Mode Adaption)是输入数据流的接口,用来适配DVB-S2种类繁多的输入流格式。对于固定编码调制(CCM)模式来说,模式适配部分包括对DVB-ASI流(或DVB并行传输流)的透明解包和8位循环冗余校验。

流适配完成基带成帧、加扰两个功能。为配合后续纠错编码,基带成帧需要将输入数据按固定长度打包(不同的纠错编码方案有不同的“固定长度”),不足处则填充无用字节补足。

前向纠错采用LDPC(内码)与BCH(外码)级联的形式。

映射部分按后续采用的具体的调制方式(QPSK、8PSK、16APSK、32APSK),将输入的经过前向纠错的串行码流转换成满足特定星座图样式的并行码流。

物理层成帧部分通过加扰实现能量扩散,以及空帧插入等。

调制部分完成基带成形和调制。

标签: 正交 信号 载波 星座 调幅